Probabilistic Modeling of Human Movements for Intention Inference

نویسندگان

  • Zhikun Wang
  • Marc Peter Deisenroth
  • Heni Ben Amor
  • David Vogt
  • Bernhard Schölkopf
  • Jan Peters
چکیده

Inference of human intention may be an essential step towards understanding human actions and is hence important for realizing efficient human-robot interaction. In this paper, we propose the Intention-Driven Dynamics Model (IDDM), a latent variable model for inferring unknown human intentions. We train the model based on observed human movements/actions. We introduce an efficient approximate inference algorithm to infer the human’s intention from an ongoing movement. We verify the feasibility of the IDDM in two scenarios, i.e., target inference in robot table tennis and action recognition for interactive humanoid robots. In both tasks, the IDDM achieves substantial improvements over state-of-the-art regression and classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic movement modeling for intention inference in human-robot interaction

Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes’ theorem. The IDDM simultaneously finds a latent state representa...

متن کامل

Optimizing the Torque of Knee Movements of a Rehabilitation Robot

The aim of this study is to employ the novel Adaptive Network-based Fuzzy Inference System to optimize the torque applied on the knee link of a rehabilitation robot. Given the special conditions of stroke or spinal cord injury patients, devices with minimum error are required for performing the rehabilitation exercises. After examining the anthropometric data tables of human body, parameters su...

متن کامل

Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Model

Anticipation is crucial for fluent human-robot interaction, which allows a robot to independently coordinate its actions with human beings in joint activities. An anticipatory robot relies on a predictive model of its human partners, and selects its own action according to the model’s predictions. Intention inference and decision making are key elements towards such anticipatory robots. In this...

متن کامل

A Novel Human-machine Interaction Architecture – Intention Recognition Approach

A novel human-machine interaction architecture is presented. It is based on the machine intention recognition of the human. This work is motivated by the desire to minimize the need for classical direct human-machine interface and communication. Here, the intention-action-state scenario is modified and modelled by dynamic Bayesian networks to facilitate for probabilistic intention inference. Th...

متن کامل

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012